Pandas: How to Read and Write Data to a SQL Database
Pandas read_sql() function is used to read data from SQL queries or database tables into DataFrame. This function allows you to execute SQL queries and load the results directly into a Pandas DataFrame. This function is a wrapper for the read_sql_query() and read_sql_table() functions, based on the input, it calls these functions internally and returns the SQL table as a two-dimensional data structure with labeled columns.
Following are the syntax of read_sql(), read_sql_query() and read_sql_table() functions.
# Syntax of read_sql()
pandas.read_sql(sql, con, index_col=None, coerce_float=True, params=None, parse_dates=None, columns=None, chunksize=None)
# Syntax of read_sql_query()
pandas.read_sql_query(sql, con, index_col=None, coerce_float=True, params=None, parse_dates=None, chunksize=None, dtype=None)
# Syntax of read_sql_table()
pandas.read_sql_table(table_name, con, schema=None, index_col=None, coerce_float=True, parse_dates=None, columns=None, chunksize=None)
Parameters :
· sql
· con
· index_col
· coerce_float
· params
· parse_dates
· columns
· chuynksize
Below is the example of reading and writing to sql database :
Reading from SQL Database :
Writing to SQL Database :
Take the first step towards data-led growth by partnering with MSA Infotech. Whether you seek tailored solutions or expert consultation, we are here to help you harness the power of data for your business. Contact us today and let’s embark on this transformative data adventure together. Get a free consultation today!
We utilize data to transform ourselves, our clients, and the world.
Partnership with leading data platforms and certified talents